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概要
アファイン平均曲率が恒等的に消えるような 3 次元ユニモデュラーアファイン空間R3 内の曲
面はアファイン極大曲面とよばれ，3 次元ユークリッド空間内の極小曲面のアファイン微分幾何
学的類似物である. 本講演では，Aledo, Mart́ınez, Milán が 2009 年に定義したアファイン極大
写像と呼ばれる特異点付きアファイン極大曲面の大域理論について解説する. 特に，アファイン
極大面という新たなサブクラスを定義し，古典的な極小曲面論を用いて “完備” なアファイン極
大面は Osserman 型の不等式を満たすことを示す．さらに，極小曲面から得られるアファイン極
大面の例についても紹介する.

1 準備
ここでは，連結かつ向き付け可能な 2 次元多様体 Σ に対して，C∞ 級写像 f : Σ → R3 のこ
とを曲面とよぶ．また，p ∈ Σ において f がはめ込みでない，つまり，p における f の微分写像
(df)p : TpΣ → Tf(p)R

3 が単射でないとき，p ∈ Σ を曲面の特異点とよぶ (曲面についての基礎事項
は例えば [24]，特異点をもつ曲面については [23]を参照)．

1.1 3次元ユークリッド空間内の極小曲面
3次元ユークリッド空間 R3 = (R3, dx21 + dx22 + dx23)へのはめ込みに対しては平均曲率が定義さ
れ，平均曲率が恒等的に 0になる曲面は極小はめ込みまたは極小曲面とよばれる．極小曲面は閉じた
針金で作った枠を石鹸液に浸したときに得られる石鹸膜の数学的モデルである (極小曲面については
例えば [20], [13], [25], [1], [27]を参照)．極小曲面は次のWeierstrassの表現公式をもつ:

事実 1.1 (Weierstrassの表現公式). Σ を Riemann面（1次元複素多様体）とし，Σ 上の有理型関
数 g と正則 1次微分形式 ω が次を満たすとする (組 (g, ω)をWeierstrassデータとよぶ):

• (正則条件) (1 + |g|2)2|ω|2 が Σ 上のリーマン計量になる．
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• (周期条件) Σ 内の任意の閉曲線 C に対して，

Re

∫
C

(1− g2, i(1 + g2)，2g)ω = 0 (1.1)

が成り立つ．
このとき，任意の固定された点 p0 ∈ Σ に対して，

f(p) := Re

∫ p

p0

(1− g2, i(1 + g2)，2g)ω : Σ −→ R3 (1.2)

は（共形）極小はめ込み*1を与える．特に，f の第一基本形式 dσ2 は

dσ2 = (1 + |g|2)2|ω|2 (1.3)

で与えられる．逆に任意の向き付け可能な（共形）極小はめ込みは (1.2)の表示を持つ．

以下，極小はめ込みはこのWeierstrassの表現公式で表されているとする．このとき，極小はめ込み
f : Σ → R3 のガウス曲率Kdσ2 と Gauss写像 G : Σ → S2 は次のように与えられる：

Kdσ2 = − 4

(1 + |g|2)3

∣∣∣∣dgω
∣∣∣∣2 , (1.4)

G =

(
2Re(g)

1 + |g|2
,
2 Im(g)

1 + |g|2
,
−1 + |g|2

1 + |g|2

)
= Π−1 ◦ g. (1.5)

ただし，Π : S2 → C ∪ {∞}は原点を中心とする 2次元単位球面 S2 からの立体射影である．Gauss

写像の各点 p ∈ Σ における値 G(p)は曲面の単位法線ベクトルとなる．特に，Gauss写像 G は，立
体射影を通して Σ 上の有理型関数 g と同一視できる．また，極小はめ込みの全曲率 C(Σ)とは

C(Σ) =

∫
Σ

Kdσ2dAdσ2 ∈ [−∞, 0] (1.6)

のことである．ただし，dAdσ2 は第一基本形式に関する面積要素である．
上記の表現公式と複素解析を用いて極小曲面の様々な幾何学的性質や例が見出された．特に，有限
全曲率である完備極小はめ込みに対して次のようなことが知られている．

事実 1.2 ([5], [19]). 極小はめ込み f : Σ → R3 が完備かつ有限全曲率ならば，あるコンパ
クト Riemann 面 Σ と {p1, . . . , pn} ⊂ Σ (n ∈ Z≥1) が存在して，Σ は Σ \ {p1, . . . , pn} と双
正則同値であり，Weierstrass データ (g, ω) は Σ 上有理型に拡張される．このとき，全曲率は
C(Σ) = −4π deg(g) ∈ −4πZ≥0 で与えられる．ここで，deg(g)は g : Σ → C ∪ {∞}の次数で，g
の Σ 内における極の位数の総和である．

ここで，極小はめ込み f : Σ → R3 が完備であるとは，Σ 内の任意の発散路の第一基本形式 ds2

に関する長さが∞となる（つまり ds2 が Σ 上の完備リーマン計量になる）ことをいう．ただし，Σ
内の発散路とは曲線 c : I → Σ であって，任意のコンパクト集合 Q ⊂ Σ に対して，ある t0 ∈ I が

*1 以降，簡単のため「共形」を省略する．



存在し，「t > t0 ならば γ(t) /∈ Qとなる」ものをいう．また，極小はめ込みが有限全曲率であるとは
C(Σ) > −∞となることである．
以下，f : Σ = Σγ \ {p1, . . . , pn} → R3 を有限全曲率である完備極小はめ込みとする．ただし，

Σγ はコンパクト Riemann面で γ はその種数である．このとき，各 pj (j = 1, . . . , n)またはその十
分小さい近傍の f による像を，エンドとよぶ．

事実 1.3 (Osserman の不等式 [19]). 完備かつ有限全曲率である極小はめ込み f : Σ = Σγ \
{p1, . . . , pn} → R3 に対して，次が成り立つ：

C(Σ) =

∫
Σ

KdA = −4π deg(g) ≤ 2π(χ(Σ)− n)． (1.7)

ただし，χ(Σ) = 2− 2γ − nは Σ の Euler標数である．さらに，(1.7)の等号成立条件はすべてのエ
ンドが埋め込みとなることである．

例 1.4. Riemann面 Σ と Σ 上定義される有理型関数 g と ω を次のように与えると，(1.2)によって
極小はめ込みが得られる．

• (平面) Σ = C, (g, ω) = (0, dz)．
• (Enneper曲面) Σ = C, (g, ω) = (z, dz)．
• (カテノイド (懸垂面)) Σ = C \ {0}, (g, ω) =

(
z, dz/z2

)．
3次元 Lorentz-Minkowski時空内の極大曲面，3次元双曲空間内の平坦曲面や平均曲率 1の曲面，

3次元 de-Sitter時空の平均曲率 1の曲面，次節で紹介するアファイン極大曲面など，Weierstrass型
の複素表現公式を持つような曲面は他にも存在し，複素解析を用いて多くの性質が明らかになって
いる．

2 特異点付きアファイン極大曲面
2.1 アファイン微分幾何学の基礎事項とアファイン極大はめ込み
ここでは，連結かつ向き付けられた 2 次元多様体 Σ からユニモデュラーアファイン空間 R3 =

(R3, det) への，曲面 ψ : Σ → R3 を考える．本節ではアファイン微分幾何学の基本的な用語とア
ファイン極大はめ込みの定義を説明する（詳細は [26], [10], [11]）．今，曲面 ψ : Σ → R3 がはめ込
みであるとする．ξ を dψ(TΣ)に横断的である ψ に沿ったベクトル場とするとき，捩じれのないア
ファイン接続 ∇，対称双線形形式 h，(1, 1)-テンソル S ，微分 1形式 τ が一意的に存在して次が成
立する： {

DXdψ(Y ) = dψ(∇XY ) + h(X,Y )ξ,
DXξ = −dψ(S(X)) + τ(X)ξ

(X,Y ∈ X (Σ)) (2.1)

ここで，D は R3 の標準接続である．対称双線形形式 hが正定値であるとき，はめ込み ψ は局所強
凸であるといい，hを ξ に関するアファイン計量とよぶ．局所強凸なはめ込み ψ : Σ → R3 に対し
ては，横断的なベクトル場 ξ を次を満たすように一意的に選ぶことができる：{

DXξ = −dψ(S(X)),
det(dψ(X), dψ(Y ), ξ) = (h(X,X)h(Y, Y )− h(X,Y )2)1/2.

(2.2)



(2.2)を満たす横断的ベクトル場 ξ をアファイン法線ベクトル場とよび，アファイン法線ベクトル場
ξ を 1つ指定したはめ込み ψ : Σ → R3 を Blaschkeはめ込みとよぶ．
以下，ψ : Σ → R3 をアファイン法線ベクトル場 ξ をもつ Blaschke はめ込みとする．このとき，
以下を満たす写像 N : Σ → R3 をアファイン余法線写像とよぶ：

⟨N, dψ⟩ = 0, ⟨N, ξ⟩ = 1． (2.3)

ただし，⟨ , ⟩はR3 の標準内積である．以上の準備の下，Blaschkeはめ込み ψ がアファイン極大は
め込み*2 であるとは，アファイン平均曲率（:= (1/2)Trace(S))が恒等的に 0となることをいう．こ
の意味で，アファイン極大曲面はユークリッド空間内の極小曲面のアファイン微分幾何的類似物であ
る．また，アファイン極大はめ込みの特別な場合として，特に S ≡ 0となるものを非固有アファイ
ン球面とよぶ．Blaschkeはめ込み ψ : Σ → R3 がアファイン極大はめ込みであることと，余法線写
像 N がアファイン計量 hに関して調和，つまり，∆h を hに関するラプラシアンとするとき

∆hN ≡ 0 (2.4)

であることと同値である．
アファイン極大はめ込みは，局所的に平面領域上の関数 φ(x, y)のグラフとして曲面を表示すると
き，φ(x, y)は次の 4階非線形偏微分方程式を満たすことが知られている：

φyyρxx − 2φxyρxy + φxxρyy = 0, ρ := (det(Hessφ))−3/4． (2.5)

特に，そのグラフ曲面が非固有アファイン球面であるとき，φ(x, y)は次を満たす：

det(Hessφ) = φxxφyy − φ2
xy = 1 (2.6)

例 2.1 (楕円放物面). 楕円放物面 ψ(x, y) := (x, y, (x2 + y2)/2) : R2 → R3 はアファイン法線ベク
トル場 ξ = (0, 0, 1)をもつ非固有アファイン球面，特にアファイン極大はめ込みである．

ここで，アファイン計量に関する複素構造によって Σ を Riemann面とみなし，さらに Σ が単連
結であるとき，(2.4)から，C3 に値をとる Σ 上の正則写像 Φ : Σ → C3 が存在して次を満たす：

N = Φ+ Φ = 2Re(Φ), (2.7)

h = −2i det
(
Φ+ Φ, dΦ, dΦ

)
, (2.8)

ξ =
∂N × ∂N

det(N, ∂N, ∂N)
=

dΦ× dΦ

det
(
Φ+ Φ, dΦ, dΦ

) . (2.9)

ただし，Riemann面上の関数 F と局所座標 z に対して，∂F = Fzdz, ∂F = Fzdz である．さらに，
Leliuvreの公式よって，アファイン極大はめ込みは次のWeierstrass型の表現公式で表される：

ψ = 2Re

(
i

∫
(Φ+ Φ)× dΦ

)
: Σ → R3 (2.10)

*2 アファイン極大はめ込みを標語的にアファイン極大曲面と呼んでいる．



逆にRiemann面ΣとC3に値をとるΣ上の正則写像Φが次を満たすとする：−2i det
(
Φ+ Φ, dΦ, dΦ

)
が Σ 上正定値であって，

(1) Φ+ Φ = 2Re(Φ) : Σ → R3 が 1価写像, (2) Re

(
i

∫
C

(Φ+ Φ)× dΦ

)
= 0. (2.11)

ただし，C は Σ 内の任意の閉曲線である．Φは一般に Σ 上 1価とは限らないことに注意せよ．この
とき，(2.10)で定まる ψ : Σ → R3 は，(2.7)で定まる N をアファイン余法線写像，(2.8)で定まる
hをアファイン計量，(2.9)で定まる ξ をアファイン法線ベクトル場とするアファイン極大はめ込み
となる．また，「与えられた正則写像 Φが (2.11)の (1)と (2)を満たすか？」という問題をアファイ
ン極大曲面に関する周期問題とよぶ．

2.2 アファイン極大写像とその完備性
事実 2.2 (アファイン Bernsteinの定理，[9]). R3 内の局所強凸かつアファイン完備（i.e., アファイ
ン計量 hが完備）なアファイン極大はめ込みは楕円放物面に限る．

このアファイン Bernsteinの定理によって，アファイン極大曲面の大域理論においては特異点を許
容した曲面を考える必要がある．そこで，Aledo–Mart́ınez–Milán が特異点付きアファイン極大曲面
である次の概念を定義した．

定義 2.3 ([2]). Riemann 面 Σ と C3 に値をとる Σ 上の正則写像 Φ : Σ̃ → C3 に対して，h :=

−2i det
(
Φ+ Φ, dΦ, dΦ

)が恒等的には 0ではないとし，(2.11)を満たすとする．このとき，(2.10)で
定まる写像 ψ : Σ → R3 をアファイン極大写像とよび，Φ をアファイン極大写像のWeierstrass

データとよぶ．また，N := Φ + Φ : Σ → R3, h をそれぞれアファイン極大写像の余法線写像，ア
ファイン計量とよぶ．

アファイン極大写像の特異点はアファイン計量 h が消える点に一致する．さらに Aledo–

Mart́ınez–Milán はアファイン極大写像に対して，Kokubu–Umehara–Yamada [8]の方法でアファ
イン完備性を拡張する形で次のように完備性を定義し，完備アファイン極大写像に関する性質を示
した．

定義 2.4 ([3]). アファイン極大写像 Σ → R3 が完備であるとは，コンパクトな台を持つ Σ 上の対
称 (0, 2)-テンソル T が存在して，|h|+ T が Σ 上の完備リーマン計量となることである．

事実 2.5 ([3]). アファイン極大写像 ψ : Σ → R3 が完備であるとき，あるコンパクト Riemann面
Σ と有限個の点 {p1, . . . pn} ⊂ Σ (n ≥ 1)が存在して，Σ は Σ \ {p1, . . . pn}と双正則同値になる．

この事実において，各 pj またはその十分小さい近傍の ψ による像のことを，完備アファイン極大
写像のエンドとよぶ．以下，Σ = Σ \ {p1, . . . pn}とおき，ψ : Σ → R3 を完備アファイン極大写像
とする．このとき，Weierstrassデータ Φの微分 dΦが各エンド pj において有理型になるとき，その
エンドは regularエンドであるといい，すべてのエンドが regularエンドであるとき，ψは regular

であるという．



事実 2.6 ([3]). 完備かつ regularなアファイン極大写像のWeierstrassデータを Φ = (Φ1, Φ2, Φ3)と
するとき，次が成り立つ：

• エンド pが埋め込まれたエンドであることと，dΦが pで 2位の極をもち，さらにある j ∈ {1, 2, 3}
が存在して dΦj が 2より小さい位数の極をもつことは同値である，

• （拡張版アファイン Bernsteinの定理）R3 内の完備かつ regularなアファイン極大写像がちょう
ど 1つだけ埋め込まれたエンドをもつならば，そのアファイン極大写像は楕円放物面である．

3 主結果—アファイン極大面とその幾何学的性質
アファイン極大写像については，他のWeierstrass型の表現公式を持つ曲面とは異なるいくつかの
困難がある：

• 方程式 (2.5)が 4階非線形であるため，解析的な扱いが難しい．
• アファイン極大写像を定める C3 に値をとる Riemann面上の正則写像 Φが一般に多価である
ため，(Φ+ Φ)× dΦが多価となりさらに “正則”でないため周期問題を解くのが難しい．

• 曲面のある種の Gauss写像を Riemann面上の有理型関数とみなす方法が知られていない．

そこで本節では，アファイン極大写像の新たなサブクラスを定義し，その幾何学的性質を調べ，極
小曲面のWeierstrassデータから構成される例を与える．

3.1 アファイン極大面
定義 3.1 ([16]). アファイン極大写像 ψ : Σ → R3 であって，その余法線写像N = Φ+Φ : Σ → R3

が（共形）極小はめ込みであるようなものをアファイン極大面とよぶ．

アファイン極大面に対しては，余法線写像 N = Φ+ Φが極小はめ込みであることから，N はユー
クリッド空間内の極小曲面としてのWeierstrass の表現公式（事実 3.1) で表される．つまり，ある
Σ 上の有理型関数 g と正則 1次微分形式 ω が存在して，次のようになる：

N = Φ+ Φ = Re

∫
(1− g2, i(1 + g2), 2g)ω : Σ → R3 (3.1)

Φ =
1

2

∫
(1− g2, i(1 + g2), 2g)ω． (3.2)

余法線写像 N のことを極小余法線写像とよぶ．また，N の極小はめ込みとしての第一基本形式 dσ2

と単位法線ベクトル場 ν，および ψ のアファイン計量 hは次のように与えられる：

dσ2 = (1 + |g|2)2|ω|2 (3.3)

ν =
Nz ×Nz

|Nz ×Nz|
=

(
2Re(g)

1 + |g|2
,
2 Im(g)

1 + |g|2
,
−1 + |g|2

1 + |g|2

)
= Π−1 ◦ g. (3.4)

h = ⟨N, ν⟩ (1 + |g|2)2|ω|2 = ⟨N, ν⟩ dσ2 (3.5)

ただし，Π : S2 → C ∪ {∞}は単位球面 S2 からの立体射影である．この ν : Σ → S2 は（アファイ



ン）Gauss写像 ([10]を参照) ξ/|ξ| : Σ → S2 とも一致するため，有理型関数 g のことも（アファイ
ン）Gauss写像とよぶ．アファイン極大面の特異点は ⟨N, ν⟩＝ 0となる点に一致する．

例 3.2 (楕円放物面). Σ ⊂ C を単連結領域とし，

g = z, ω = dz

と定めると，この (g, ω)から (3.1)から定まる極小余法線写像N : Σ → R3 は平面であり，(2.10)か
ら得られるアファイン極大面は楕円放物面となる．

なお，オリジナルの「極大面」は Lorentz-Minkowski 時空内の特異点付きの極大曲面に対して
Umehara–Yamada [22]が定義した．

3.2 アファイン極大面の完備性
アファイン極大面 ψ : Σ → R3 が定義 2.4の意味でアファイン極大写像として完備（アファイン
計量 hに関する完備性）であるとき，ψ は完備であるという．一方，アファイン極大面を考えるとき
は，アファイン計量 hの他に極小余法線写像も第一基本形式 dσ2 (3.3)をもつため，この計量に関す
る完備性も考えるのが自然である．これら 2つの計量に関する完備性には次の関係がある．

命題 3.3 ([16]). (1) アファイン極大面が完備ならば極小余法線写像 N が極小はめ込みとして完備，
つまり dσ2 は完備リーマン計量である.

(2) アファイン極大面が完備かつ regularであることと，極小余法線写像が極小はめ込みとして完備
かつ有限全曲率で，アファイン極大面の特異点集合がコンパクトとなることが同値である．

(1)において逆は一般に不成立である（例 3.6参照)．よって，dσ2 が完備であるとき，アファイン
極大面は弱完備であるという．また，極小余法線写像 N : Σ → R3 の極小はめ込みとしての全曲率
(1.6)をアファイン極大面の全曲率と定める．したがって，アファイン極大面 ψ : Σ → R3 が

「完備」 または 「弱完備かつ有限全曲率」

のいずれかであるとき，前者の場合は事実 2.5，後者の場合は Huber–Ossermanの定理（事実 1.2 ）
から，コンパクト Riemann面 Σ と {p1, . . . , pn} ⊂ Σ (n ∈ Z≥1)が存在して Σ は Σ \ {p1, . . . , pn}
と双正則同値となる．よって，有限全曲率かつ完備である極小はめ込みとしての極小余法線写像
N : Σ → R3 に対して Ossermanの不等式（事実 1.3）の議論が適用でき，次が従う：

定理 3.4 ([16]). ψ : Σ = Σ \ {p1, . . . , pn} → R3 を完備かつ regularであるアファイン極大面とす
るとき次が成立する： ∫

Σ

Kdσ2dAdσ2 = −4π deg(g) ≤ 2π(χ(Σ)− n). (3.6)

ただし，積分はアファイン極大面の全曲率である．さらに，(3.6)の等号成立条件はすべてのエンド
が埋め込みとなることである．

不等式 (3.6)は弱完備かつ有限全曲率であるアファイン極大面に対しても成り立つ．2節で述べた



ように，非固有アファイン球面はアファイン極大曲面のサブクラスであり．特異点付きの非固有ア
ファイン球面をまたは非固有アファイン波面という ([14], [15])．次の定理は，アファイン極大面が非
自明な非固有アファイン波面を含まないサブクラスを与えていることを示している：

定理 3.5 ([16]). 完備なアファイン極大面 ψ : Σ → R3 が非固有アファイン波面であるとき，ψ は楕
円放物面（例 2.1, 3.2）である．特に，アファイン Gauss写像が定値であるようなアファイン極大面
は楕円放物面である．

3.3 アファイン極大面の例
極小曲面のWeierstrassデータから構成されるアファイン極大面の例を紹介する（図 1, 2）．

例 3.6 ([16], Enneper曲面型).

Σ = C, g = z, ω = dz. (3.7)

から定まる極小余法線写像N : Σ → R3 は Enneper曲面である．この (g, ω)から定まるアファイン
極大面は弱完備であるが，特異点集合がコンパクトでないため完備でない．

例 3.7 ([16], カテノイド型).

Σ = C \ {0}, g = z, ω =
dz

z2
. (3.8)

から定まる極小余法線写像 N : Σ → R3 はカテノイドである．この (g, ω)から定まるアファイン極
大面は完備かつ regularである．

例 3.8 ([16], 極小Möbiusの帯型).

Σ = C \ {0}, g = z2
z + 1

z − 1
, ω = i

(z − 1)2

z4
dz. (3.9)

反正則対合 I = −1/z に対して I-不変な極小余法線写像 N : Σ → R3 から誘導される向き付け不可
能な極小はめ込み Ñ : Σ/⟨I⟩ = RP 2 \ {1 点 } → R3 は極小Möbiusの帯である ([17])．一方，この
(g, ω)から定まるアファイン極大面は Σ 上 well-definedであるが I-不変でない．

例 3.9 ([16], Miyaoka–Sato型).

Σ = C \ {0}, g =
zn − a

zn − 1
, ω =

(zn − 1)2

zm
dz. (3.10)

ただし，m,n ∈ Z≥2, a ∈ C \ {0,±1}は n > m− 1 > 1かつ n ̸= 2(m− 1) を満たす. この (g, ω)

から定まるアファイン極大面の全曲率は −4nπ なので，任意に与えられた全曲率をもつアファイン
極大面が存在することがわかる．なお，この (g, ω)をWeierstrassデータとするような極小はめ込み
は Gauss写像の除外値の数が 2であるような例としてMiyaoka–Sato [18]によって与えられた．



Enneper 曲面型 カテノイド型
図 1 アファイン極大面の例 (1)

極小Möbius の帯型 Miyaoka–Sato 型
図 2 アファイン極大面の例 (2)
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[12] F. J. López. The classification of complete minimal surfaces with total curvature greater

than −12π. Trans. Amer. Math. Soc., Vol. 334, No. 1, pp. 49–74, 1992.
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